jueves, 18 de junio de 2009

El término ciclo biogeoquímico se deriva del movimiento cíclico de los elementos que forman los organismos biológicos (bio) y el ambiente geológico (geo) e intervienen en un cambio químico.
Son procesos naturales que reciclan elementos en diferentes formas químicas desde el medio ambiente hacia los organismos, y luego a la inversa. Agua, carbón, oxígeno, nitrógeno, fósforo y otros elementos recorren estos ciclos, conectando los componentes vivos y no vivos de la Tierra.
Hay tres tipos de ciclos biogeoquímicos interconectados.
En los ciclos gaseosos, los nutrientes circulan principalmente entre la atmósfera (agua) y los organismos vivos. En la mayoría de estos ciclos los elementos son reciclados rápidamente, con frecuencia en horas o días. Los principales ciclos gaseosos son los del carbono, oxígeno y nitrógeno.
En los ciclossedimentarios, los nutrientes circulan principalmente en la corteza terrestre (suelo, rocas y sedimentos) la hidrosfera y los organismos vivos. Los elementos en estos ciclos, generalmente reciclados mucho más lentamente que en los ciclos atmosféricos, porque los elementos son retenidos en las rocas sedimentarias durante largo tiempo, con frecuencia de miles a millones de años y no tienen una fase gaseosa. El fósforo y el azufre son dos de los 36 elementos reciclados de esta manera.
En el ciclo hidrológico; el agua circula entre el océano, el aire, la tierra y los organismos vivos, este ciclo también distribuye el calor solar sobre la superficie del planeta.
Los elementos requeridos por los organismos en grandes cantidades se denominan macronutrientes. Son ejemplos: el carbono, oxígeno, hidrógeno, nitrógeno, fósforo, azufre, calcio, magnesio y potasio. Estos elementos y sus compuestos constituyen el 97% de la masa del cuerpo humano, y más de 95% de la masa de todos los organismos. Los 30 o más elementos requeridos por los organismos en cantidades pequeñas, o trazas, se llaman micronutrientes. Son ejemplos el hierro, cobre, zinc, cloro y yodo.
Este ciclamento de los nutrientes desde el ambiente no vivo (depósitos en la atmósfera, la hidrosfera y la corteza de la tierra) hasta los organismos vivos, y de regreso al ambiente no vivo, tiene lugar en los ciclos biogeoquímicos (literalmente, de la vida (bio) en la tierra (geo), estos ciclos, activados directa o indirectamente por la energía que proviene del Sol, incluyen los del carbono, oxígeno, nitrógeno, fósforo, azufre y del agua (hidrológicos).
El planeta Tierra actúa como un sistema cerrado en el que las cantidades de materia permanecen constantes. Sin embargo, sí existen continuos cambios en el estado químico de la materia produciéndose formas que van desde un simple compuesto químico a compuestos complejos construidos a partir de esos elementos. Algunas formas de vida, especialmente las plantas y muchos microorganismos, usan compuestos inorgánicos como nutrientes. Los animales requieren compuestos orgánicos más complejos para su nutrición. La vida sobre la Tierra depende del ciclo de los elementos químicos que va desde su estado elemental pasando a compuesto inorgánico y de ahí a compuesto orgánico para volver a su estado elemental.”
Así pues, toda la “materia prima” necesaria para garantizar el correcto desarrollo de la vida en el planeta se encuentran dentro de nuestra biosfera. Pero todos estos elementos, carbono, oxigeno, nitrógeno, fósforo, azufre, etc., imprescindibles para el metabolismo de los seres vivos, son necesarios en diferentes “formatos” según sus diferentes consumidores. Los productores primarios utilizan directamente la materia inorgánica para nutrirse, convirtiéndola en materia orgánica, utilizada a su vez por los productores secundarios para su desarrollo.
Este continuo “cambio de estado de la materia” hace que ésta deba reciclarse continuamente, con la participación activa de organismos cuya función ecológica es, precisamente, reciclar la materia orgánica a su forma inorgánica, para poder comenzar de nuevo su ciclo de utilización en la naturaleza.
Por referirse a las trayectorias de los elementos químicos entre los seres vivos y el ambiente en que viven, es decir, entre los componentes bióticos y abióticos de la biosfera estos complejos circuitos se denominan ciclos biogeoquímicos.
Gracias a los ciclos biogeoquímicos es posible que los elementos se encuentres disponibles para ser usados una y otra vez por otros organismos; sin estos la vida se extinguiría.
1. CICLO DEL CARBONO. Gaseoso
Aunque el carbono es un elemento muy raro en el mundo no viviente de la tierra, representa alrededor del 18% de la materia viva. La capacidad de los átomos de carbono de unirse unos con otros proporciona la base para la diversidad molecular y el tamaño molecular, sin los cuales la vida tal como la conocemos no podría existir.
Fuera de la materia orgánica, el carbono se encuentra en forma de bióxido de carbono (CO2) y en las rocas carbonatadas (calizas, coral). Los organismos autótrofos -especialmente las plantas verdes- toman el bióxido de carbono y lo reducen a compuestos orgánicos: carbohidratos, proteínas, lípidos y otros. Los productores terrestres obtienen el bióxido de carbono de la atmósfera y los productores acuáticos lo utilizan disuelto en el agua (en forma de bicarbonato, HCO3-). Las redes alimentarias dependen del carbono, no solamente en lo que se refiere a su estructura sino también a su energía.
En cada nivel trófico de una red alimentaria, el carbono regresa a la atmósfera o al agua como resultado de la respiración. Las plantas, los herbívoros y los carnívoros respiran y al hacerlo liberan bióxido de carbono. La mayor parte de la materia orgánica en cada nivel trófico superior sino que pasa hacia el nivel trófico "final", los organismos de descomposición. Esto sucede a medida que mueren las plantas y los animales o sus partes (por ejemplo, las hojas). Las bacterias y los hongos desempeñan el papel vital de liberar el carbono de los cadáveres o de los fragmentos que ya no podrán utilizarse como alimento para otros niveles tróficos. Mediante el metabolismo de los animales y de las plantas se libera el bióxido de carbono y el ciclo del carbono puede volver a comenzar.
2. EL CICLO DEL OXIGENO Gaseoso
El oxígeno molecular (O2) representa el 20% de la atmósfera terrestre. Este patrimonio abastece las necesidades de todos los organismos terrestres respiradores y cuando se disuelve en el agua, las necesidades de los organismos acuáticos. En el proceso de la respiración, el oxígeno actúa como aceptor final para los electrones retirados de los átomos de carbono de los alimentos. El producto es agua. El ciclo se completa en la fotosíntesis cuando se captura la energía de la luz para alejar los electrones respecto de los átomos de oxígeno de las moléculas de agua. Los electrones reducen los átomos de carbono (de bióxido de carbono) a carbohidrato. Al final se produce oxígeno molecular y así el ciclo se completa.
Por cada molécula de oxígeno utilizada en la respiración celular, se libera una molécula de bióxido de carbono. Inversamente, por cada molécula de bióxido de carbono absorbida en la fotosíntesis, se libera una molécula de oxígeno.
3. CICLO DEL NITROGENO. Gaseoso
Todos los seres vivos requieren de átomos de nitrógeno para la síntesis de proteínas de una variedad de otras moléculas orgánicas esenciales. El aire, que contiene 79% de nitrógeno, se utiliza como el reservorio de esta sustancia. A pesar del gran tamaño del patrimonio de nitrógeno, a menudo es uno de los ingredientes limitantes de los seres vivos. Esto se debe a que la mayoría de los organismos no puede utilizar nitrógeno en forma elemental, es decir: como gas N2. Para que las plantas puedan sintetizar proteína tienen que obtener el nitrógeno en forma "fijada", es decir: incorporado en compuestos. La forma más comúnmente utilizada es la de iones de nitrato, NO3-. Sin embargo, otras sustancias tales como el amoníaco NH3 y la urea (NH2) 2CO, se utilizan con éxito tanto en los sistemas naturales como en forma de fertilizantes en la agricultura.
Fijación del Nitrógeno. La molécula de nitrógeno, N2, es bastante inerte. Para separar los átomos, de tal manera que puedan combinarse con otros átomos, se necesita el suministro de grandes cantidades de energía. Tres procesos desempeñan un papel importante en la fijación del nitrógeno en la biosfera. Uno de estos es el relámpago. La energía enorme de un relámpago rompe las moléculas de nitrógeno y permite que se combinen con el oxígeno del aire. Los óxidos de nitrógeno formados se disuelven en el agua de lluvia y forman nitratos. En esta forma pueden ser transportados a la tierra. La fijación atmosférica del nitrógeno probablemente representa un 5-8% del total.
La necesidad de nitratos para la fabricación de explosivos condujo al desarrollo de un proceso industrial de fijación del nitrógeno. En este proceso, el hidrógeno (derivado generalmente del gas natural o del petróleo) y el nitrógeno reaccionan para formar amoníaco, NH3. Para que la reacción pueda desarrollarse eficientemente, tiene que efectuarse a elevadas temperaturas (600ºC), bajo gran presión y en la presencia de un catalizador. Hoy en día, la mayor parte del nitrógeno fijado industrialmente se utiliza como fertilizante. Quizás un tercio de toda la fijación del nitrógeno que hoy en día tiene lugar en la biosfera se efectúa industrialmente.
Las bacterias son capaces de fijar el nitrógeno atmosférico tanto para su huésped como para sí mismas. En efecto, la capacidad para fijar nitrógeno parece ser exclusiva de los procariotes.
Otras bacterias fijadoras del nitrógeno viven libremente en el suelo. También algunas algas verde-azules son capaces de fijar en nitrógeno y desempeñan un papel importante en el mantenimiento de la fertilidad en medios semiacuáticos como campos de arroz.
A pesar de la amplia investigación desarrollada, todavía no es claro de que manera los fijadores del nitrógeno son capaces de vencer las barreras de alta energía inherentes al proceso. Ellos requieren de una enzima, llamada nitrogenasa, y un alto consumo de ATP. Aunque el primer producto estable del proceso es el amoníaco, este es incorporado rápidamente en las proteínas y en otros compuestos orgánicos que contienen nitrógeno. Podemos decir, entonces, que la fijación del nitrógeno en las proteínas de la planta (y de los microbios). Las plantas carentes de los beneficios de la asociación con fijadores del nitrógeno, sintetizan sus proteínas con fijadores de nitrógeno absorbido del suelo, generalmente en forma de nitratos.
Descomposición. Las proteínas sintetizadas por las plantas entran y atraviesan redes alimentarias al igual que los carbohidratos. En cada nivel trófico se producen desprendimientos hacia el ambiente, principalmente en forma de excreciones. Los beneficiarios terminales de los compuestos nitrogenados orgánicos son microorganismos de descomposición. Mediante sus actividades, las moléculas nitrogenadas orgánicas de las excreciones y de los cadáveres son descompuestas y transformadas en amoniaco.
Nitrificación. El amoniaco puede ser absorbido directamente por las plantas a través de sus raíces y, como se ha demostrado en algunas especies, a través de sus hojas. (Estas últimas, cuando se exponen a gas de amoniaco previamente marcado con isótopos radiactivos, incorporan amoniaco en sus proteínas). Sin embargo, la mayor parte del amoníaco producido por descomposición se convierte en nitratos. Este proceso se cumple en dos pasos. Las bacterias del género nitrosomonas oxidizan el NH3 y lo convierten en nitritos (NO2-). Los nitritos son luego oxidados y se convierten en nitratos (NO3-) mediante bacterias del género Nitrobacter. Estos dos grupos de bacterias quimioautotróficas se denominan bacterias nitrificantes. A través de sus actividades (que les suministran toda la energía requerida para sus necesidades), el nitrógeno es puesto a disposición de las raíces de las plantas.
Desnitrificación. Si el proceso descrito antes comprendiera el ciclo completo del nitrógeno, estaríamos ante el problema de la reducción permanente del patrimonio de nitrógeno atmosférico libre, a medida que es fijado comienza el ciclaje a través de diversos ecosistemas. Otro proceso, la desnitrificación, reduce los nitratos a nitrógeno, el cual se incorpora nuevamente a la atmósfera. Así, otra vez, las bacterias son los agentes implicados. Estos microorganismos viven a cierta profundidad en el suelo y en los sedimentos acuáticos donde existe escasez de oxígeno. Las bacterias utilizan los nitratos para sustituir al oxígeno como aceptor final de los electrones que se desprenden durante la respiración. Al hacerlo así, las bacterias cierran el ciclo del nitrógeno.
4. CICLO DEL AZUFRE. Sedimentario
El azufre esta incorporado prácticamente en todas las proteínas y de esta manera es un elemento absolutamente esencial para todos los seres vivos. Se desplaza a través de la biosfera en dos ciclos, uno interior y otro exterior. El ciclo interior comprende el paso desde el suelo (o desde el agua en los ambientes acuáticos) a las plantas, a los animales, y de regreso nuevamente al suelo o al agua. Sin embargo, existen vacíos en este ciclo interno. Algunos de los compuestos sulfúricos presentes en la tierra (por ejemplo, el suelo) son llevados al mar por los ríos. Este azufre se perdería y escaparía del ciclo terrestre si no fuera por un mecanismo que lo devuelve a la tierra. Tal mecanismo consiste en convertirlo en compuestos gaseosos tales como el ácido sulfhidrico (H2S) y el bióxido de azufre (SO2). Estos penetran en la atmósfera y son llevados a tierra firme. Generalmente son lavados por las lluvias, aunque parte del bióxido de azufre puede ser directamente absorbido por las plantas desde la atmósfera.
Las bacterias desempeñan un papel crucial en el ciclaje del azufre. Cuando está presente en el aire, la descomposición de los compuestos del azufre (incluyendo la descomposición de las proteínas) produce sulfato (SO4=). Bajo condiciones anaeróbicas, el ácido sulfhidrico (gas de olor a huevos podridos) y el sulfuro de dimetilo (CH3SCH3) son los productos principales. Cuando estos dos últimos gases llegan a la atmósfera, son oxidadas y se convierten en bióxido de azufre. La oxidación ulterior del bióxido de azufre y su disolución en el agua lluvia produce ácido sulfhidrico y sulfatos, formas principales bajo las cuales regresa el azufre a los ecosistemas terrestres.
El carbón mineral y el petróleo contienen también azufre y su combustión libera bióxido de azufre en la atmósfera.
5. EL CICLO DEL FOSFORO. Sedimentario
Aunque la proporción de fósforo en la materia viva es relativamente pequeña, el papel que desempeña es absolutamente indispensable. Los ácidos nucleicos, sustancias que almacenan y traducen el código genético, son ricos en fósforo. Muchas sustancias intermedias en la fotosíntesis y en la respiración celular están combinadas con fósforo, y los átomos de fósforo proporcionan la base para la formación de los enlaces de alto contenido de energía del ATP, que a su vez desempeña el papel de intercambiador de la energía, tanto en la fotosíntesis como en la respiración celular.
El fósforo es un elemento más bien escaso del mundo no viviente. La productividad de la mayoría de los ecosistemas terrestres pueden aumentarse si se aumenta la cantidad de fósforo disponible en el suelo. Como los rendimientos agrícolas están también limitados por la disponibilidad de nitrógeno y potasio, los programas de fertilización incluyen estos nutrientes. En efecto, la composición de la mayoría de los fertilizantes se expresa mediante tres cifras. La primera expresa el porcentaje de nitrógeno en el fertilizante; la segunda, el contenido de fósforo (como sí estuviese presente en forma de P2O5); y la tercera, el contenido de potasio (expresada sí estuviera en forma de óxido K2O).
El fósforo, al igual que el nitrógeno y el azufre, participa en un ciclo interno, como también en un ciclo global, geológico. En el ciclo menor, la materia orgánica que contiene fósforo (por ejemplo: restos de vegetales, excrementos animales) es descompuesta y el fósforo queda disponible para ser absorbido por las raíces de la planta, en donde se unirá a compuestos orgánicos. Después de atravesar las cadenas alimentarias, vuelve otra vez a los descomponedores, con lo cual se cierra el ciclo. Hay algunos vacíos entre el ciclo interno y el ciclo externo. El agua lava el fósforo no solamente de las rocas que contienen fosfato sino también del suelo. Parte de este fósforo es interceptado por los organismos acuáticos, pero finalmente sale hacia el mar.
El ciclaje global del fósforo difiere con respecto de los del carbón, del nitrógeno y del azufre en un aspecto principal. El fósforo no forma compuestos volátiles que le permitan pasar de los océanos a la atmósfera y desde allí retornar a tierra firme. Una vez en el mar, solo existen dos mecanismos para el reciclaje del fósforo desde el océano hacia los ecosistemas terrestres. El uno es mediante las aves marinas que recogen el fósforo que pasa a través de las cadenas alimentarias marinas y que pueden devolverlo a la tierra firme en sus excrementos. Además de la actividad de estos animales, hay la posibilidad del levantamiento geológico lento de los sedimentos del océano para formar tierra firme, un proceso medido en millones de años.
El hombre moviliza el ciclaje del fósforo cuando explota rocas que contienen fosfato.
6. CICLO DEL AGUA (Ciclo Hidrológico).
El ciclo del agua o ciclo hidrológico, que colecta, purifica y distribuye el abasto fijo del agua de la tierra. El ciclo hidrológico está enlazado con los otros ciclos biogeoquímicos, porque el agua es un medio importante para el movimiento de los nutrientes dentro y fuera de los ecosistemas.
La energía solar y la gravedad convierten continuamente el agua de un estado físico a otro, y la desplazan entre el océano, el aire, la tierra y los organismos vivos. Los procesos principales en este reciclamiento y ciclo purificador del agua, son la evaporación (conversión del agua en vapor acuoso), condensación (conversión del vapor de agua en gotículas de agua líquida), transpiración (proceso en el cual es absorbida por los sistemas de raíces de las plantas y pasa a través de los poros (estomas) de sus hojas u otras partes, para evaporarse luego en la atmósfera, precipitación (rocío, lluvia, aguanieve, granizo, nieve) y escurrimiento de regreso al mar para empezar el ciclo de nuevo.
La energía solar incidente evapora el agua de los mares y océanos, corrientes fluviales, lagos, suelo y vegetación, hacia la atmósfera. Los vientos y masas de aire transportan este vapor acuoso sobre varias partes de la superficie terrestre. La disminución de la temperatura en partes de la atmósfera hacen que el vapor de agua se condense y forme gotículas de agua que se aglomeran como nubes o niebla. Eventualmente, tales gotículas se combinan y llegan a ser lo suficientemente pesadas para caer a la tierra y a masas de agua, como precipitación.
Parte del agua dulce que regresa a la superficie de la tierra como precipitación atmosférica queda detenida en los glaciares. Gran parte de ella se colecta en charcos y arroyos, y es descargada en lagos y en ríos, que llevan el agua de regreso a los mares, completando el ciclo. Este escurrimiento de agua superficial desde la tierra reabastece corrientes y lagos, y también causa erosión del suelo lo cual impulsa a varias sustancias químicas a través de porciones de otros ciclos biogeoquímicos.
Una gran parte del agua que regresa a la tierra penetra o se infiltra en las capas superficiales del suelo, y parte se resume en el terreno. Allí, es almacenada como agua freática o subterránea en los poros y grietas de las rocas. Esta agua, como el agua superficial, fluye cuesta abajo y se vierte en corrientes y lagos, o aflora en manantiales. Eventualmente, dicha agua, como el agua de superficies, se evapora o llega al mar para iniciar el ciclo de nuevo. La intensidad media de circulación del agua subterránea en el ciclo hidrológico es extremadamente lenta (en cientos de años), comparada con la de la superficie (10 a 120 días) y la de la atmósfera (10 a 12 días).
En algunos casos, los nutientes son transportados cuando se disuelven en el agua corriente, en otros casos, los compuestos nutrientes ligeramente solubles o insolubles del suelo o del fondo del mar, son desplazados de un lugar a otro por el flujo del agua.
Desde que la tierra se conoce como planeta, siempre ha existido una serie de elementos que sostienen la vida de los seres vivos. Son nutrientes inorgánicos tales como: El Oxigeno, el Carbo, el Hidrogeno y el Nitrógeno, entre otros. Si estos elementos son traídos de la tierra sin posibilidad de recuperarlos, llegaría un momento en que ocurriría un desequilibrio en la biosfera; para que esto no ocurra, existen un considerable número de microorganismos, llamados descomponedores que al morir los seres vivos, rompen las moléculas orgánicas de éstos y forman moléculas inorgánicas sencillas, que envuelven al medio ambiente estableciéndose así un ciclo cerrado de elementos inorgánicos
Así como los animales y demás seres vivos se aprovechan y se benefician alimentándose de la materia orgánica, del mismo modo, estas satisfacen las suyas extrayendo los nutrientes inorgánicos del sustrato o medio ambiente. Ciertamente que estos ciclos no se desarrollan siempre con velocidad uniforme. A veces hay elementos que son retenidos mucho tiempo por un organismo y tardan en regresar al medio. A todo este ciclo que va desde la materia orgánica y se incorpora a los organismos desde el suelo, siendo aprovechado por los seres autótrofos y luego por los heterótrofos, se les conoce como ciclos biogeoquímicos.